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M a t h e m a t i c s

ON THE MINIMAL COSET COVERINGS OF THE SET OF SINGULAR
AND OF THE SET OF NONSINGULAR MATRICES
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It is determined minimum number of cosets over linear subspaces in Fq
necessary to cover following two sets of A(n× n) matrices. For one of the set
of matrices detA= 0 and for the other set detA 6= 0. It is proved that for singular
matrices this number is equal to 1+q+q2 + . . .+qn−1 and for the nonsingular
matrices it is equal to (qn−1)(qn−q)(qn−q2) · · ·(qn−qn−1)/q(

n
2).
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Introduction. Let Fq be the finite field of q elements and Mn(Fq) be the vector
space of matrices of size n×n over Fq. A coset of subspace L in Mn(Fq) is a translate
of L, i.e. it coincides with m+L ≡ {m+ x | x ∈ L} for some matrix m. It is known
that any k-dimensional coset in Mn(Fq) can be represented as a set of solutions of a
certain system of linear equations over Fq of rank n2− k and vice versa.

Let S be a subset of Mn(Fq). We say that set of cosets {L1,L2, . . . ,Lk} covers
S if and only if Li ⊆ S for 1 ≤ i ≤ k and S =

⋃k
i=1 Li. The length of the covering is

the number of its cosets.
Matrix m ∈Mn(Fq) is called singular (nonsingular), if its determinant is equal

to 0 (is not equal to 0). The set of nonsingular matrices of Mn(Fq) forms the General
Linear Group (GLn(Fq)).

A coset L is maximal for the set S if L ⊆ S and no coset contained
in S contains L.

We shall proved two results. First one determines the minimum number of
cosets in Mn(Fq) that one must choose in order to cover the set of all solutions of the
polynomial equation

det


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

xn1 xn2 . . . xnn

= 0, (1)

where xi j,1≤ i, j ≤ n, are variables in Fq.
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And second result establishes the minimal covering for the complement set
(det(A) 6= 0).

In other words, we look for the minimal cover with cosets for the:
� singular matrices: Mn(Fq)\GLn(Fq);
� nonsingular matrices: GLn(Fq).
The problem of the shortest or minimal coset covering of the subsets in finite

fields was introduced and studied in [1–3].
T h e o r e m 1. The minimum number of cosets necessary to cover

Mn(Fq)\GLn(Fq) (i.e. the set of all singular matrices) is equal to

qn−1
q−1

= 1+q+q2 + . . .+qn−1.

T h e o r e m 2. The minimum number of cosets necessary to cover

GLn(Fq) is equal to
(qn−1)(qn−q)(qn−q2) · · ·(qn−qn−1)

q(
n
2)

.

Minimal Covering for Mn(Fq)\GLn(Fq). A classification of maximal cosets
in Mn(Fq)\GLn(Fq) is given in [4–6]. It was proved that they are all the subspaces of
dimension n(n−1).

One can get such a coset by choosing some linear relation between several
rows or several columns of matrices. For example matrices with a zero first row
forms such a coset. Another example is given by matrices for which the first column
is the sum of the second and the third columns.

Due to the below theorem from [6] all maximal cosets are formed in the
described way.

Let Fn
q be a vector space of dimension n over Fq. Denote by x⊗y∈Mn(Fq), the

Kronecker product of x,y ∈ Fn
q. It is defined in the following way. If x = (x1, . . . ,xn),

y = (y1, . . . ,yn), then

x⊗ y =


x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yn
...

...
...

xny1 xny2 . . . xnyn

 . (2)

For A,B ⊆ Fn
q, let A⊗ B = span{x⊗ y | x ∈ A,y ∈ B}, where span{S} of

set S is the set of all linear combinations of vectors in S.
T h e o r e m 3. [6]. Suppose W ⊆ Mn(Fq) is a subspace of dimension

n(n − 1), such that for all A ∈ W , det(A) = 0. Then either W = E ⊗ Fn
q or

W = Fn
q⊗E for some n−1 dimensional subspace E ⊆ Fn

q.
It follows that there is 2 to 1 matching between maximal cosets and n− 1 di-

mensional subspaces of Fn
q. n−1 dimensional subspace of Fn

q is defined as a solution
set of a linear homogeneous equation α1x1 + . . .+αnxn = 0, where α1, . . . ,αn ∈ Fq

and not all coefficients are 0. Two matching cosets are constructed in the following
way. In one of them the linear equation is applied on the rows of matrices (lets call it
a row coset), and other one is constructed when the same equation is applied on the
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columns of matrices (lets call it a column coset). It is easy to see, that if we transpose
all matrices of a row coset, we will get matching column coset.

Since number of n − 1 dimensional subspaces of Fn
q is equal to(

n
n−1

)
q
=

qn−1
q−1

, there are
qn−1
q−1

row cosets and
qn−1
q−1

column cosets.

It is easy to see that only row cosets or only column cosets cover
Mn(Fq)\GLn(Fq). It follows from the fact that each singular matrix has rows that
are linearly dependent and has columns that are linearly dependent.

Following theorem states that those 2 coverings are minimal. One can not get
covering with less cosets by taking several row cosets and several column cosets.

There is no covering with less than
qn−1
q−1

= 1+q+q2 + . . .+qn−1 cosets.

T h e o r e m 4. In order to cover the set of singular matrices of Mn(Fq) one
must take all row cosets or all column cosets.

P r o o f . Let L be a covering for the set of Mn(Fq)\GLn(Fq) and it does not
contain one of row cosets (call it R) and one of column cosets (call it C). In this case
there exists a singular matrix that is not covered by cosets of L.

Since R is a row coset there is a linear relation on rows of matrices of R.
It means that there is a row that is linearly dependent on other rows. In the same
way there is a column that is linearly dependent on other columns in matrices of C.
For the simplicity of proof we can assume that first row is dependent on other rows
and first column is dependent on other columns.

It means that we have the following relations:
� r1 = α2r2 + . . .+αnrn;
� c1 = β2c2 + . . .+βncn;

where r1, . . . ,rn are row vectors and c1, . . . ,cn are column vectors.
We construct the matrix m in the following way:

m =


β2α2 + . . .+βnαn α2 . . . αn

β2 1 . . . 0
...

...
...

βn 0 . . . 1

 . (3)

The sub-matrix, where the first row and the first column are excluded, is filled
by the identity matrix of size (n−1)× (n−1).

One can see that both linear relations are satisfied on m so it has the following
properties:

� m ∈ R;
� m ∈C;
� m does not belong to any other row coset;
� m does not belong to any other column coset.
Last two properties follow from the fact that all rows of m except first and

all columns of m except first are linearly independent. Since L does not contain
R and C, it does not cover m, so it is not a covering for Mn(Fq)\GLn(Fq). �
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Theorem 1 follows from this Theorem.
Minimal Covering for GLn(Fq). The maximal cosets in the GLn(Fq)

are classified in [7]. It was proved that they have dimension at most
(

n
2

)
.

Proof of Theorem 2. We are going to cover GLn(Fq) by maximal cosets.
Let H be the linear subspace of strictly upper triangular matrices:

H =




0 α12 . . . α1n

0 0 . . . α2n
...

...
...

0 0 . . . αn−1n

0 0 . . . 0

 , αi, j ∈ Fq


. (4)

If e is the identity matrix, then the set e+H is maximal coset in GLn(Fq)

because it has dimension
(

n
2

)
.

It is easy to verify that e+H is a multiplicative subgroup in GLn(Fq). Consider
left cosets of e+H. Each of them is of the form p(e+H) = p+ pH, where p is a
nonsingular matrix. Since H is a subspace in Mn(Fq), then pH is also a subspace and
p+ pH is a coset of the linear subspace pH in GLn(Fq). Therefore any multiplicative
left coset p(e+H) is a coset of linear subspace in GLn(Fq). The set of left cosets of
e+H obviously forms a minimal covering for GLn(Fq).

The order of GLn(Fq) is equal to (qn− 1)(qn− q)(qn− q2) · · ·(qn− qn−1).
Thus the length of the minimal covering is equal to the index of e+H in GLn(Fq),

which is
(qn−1)(qn−q)(qn−q2) · · ·(qn−qn−1)

q(
n
2)

. �
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